Curves of Minimal Action over Metric Spaces
نویسنده
چکیده
Given a metric space X, we consider a class of action functionals, generalizing those considered in [10] and [3], which measure the cost of joining two given points x0 and x1, by means of an absolutely continuous curve. In the case X is given by a space of probability measures, we can think of these action functionals as giving the cost of some congested/concentrated mass transfer problem. We focus on the possibility to split the mass in its moving part and its part that (in some sense) has already reached its final destination: we consider new action functionals, taking into account only the contribution of the moving part.
منابع مشابه
Fixed point theorems for generalized quasi-contractions in cone $b$-metric spaces over Banach algebras without the assumption of normality with applications
In this paper, we introduce the concept of generalized quasi-contractions in the setting of cone $b$-metric spaces over Banach algebras. By omitting the assumption of normality we establish common fixed point theorems for the generalized quasi-contractions with the spectral radius $r(lambda)$ of the quasi-contractive constant vector $lambda$ satisfying $r(lambda)in [0,frac{1}{s})$ in the set...
متن کاملRiemann-Roch Spaces and Linear Network Codes
We construct linear network codes utilizing algebraic curves over finite fields and certain associated Riemann-Roch spaces and present methods to obtain their parameters. In particular we treat the Hermitian curve and the curves associated with the Suzuki and Ree groups all having the maximal number of points for curves of their respective genera. Linear network coding transmits information in ...
متن کاملVector Valued multiple of $chi^{2}$ over $p$-metric sequence spaces defined by Musielak
In this article, we define the vector valued multiple of $chi^{2}$ over $p$-metric sequence spaces defined by Musielak and study some of their topological properties and some inclusion results.
متن کاملContractive maps in Mustafa-Sims metric spaces
The xed point result in Mustafa-Sims metrical structures obtained by Karapinar and Agarwal[Fixed Point Th. Appl., 2013, 2013:154] is deductible from a corresponding one stated in terms ofanticipative contractions over the associated (standard) metric space.
متن کاملOn some open problems in cone metric space over Banach algebra
In this paper we prove an analogue of Banach and Kannan fixed point theorems by generalizing the Lipschitz constat $k$, in generalized Lipschitz mapping on cone metric space over Banach algebra, which are answers for the open problems proposed by Sastry et al, [K. P. R. Sastry, G. A. Naidu, T. Bakeshie, Fixed point theorems in cone metric spaces with Banach algebra cones, Int. J. of Math. Sci. ...
متن کامل